4 research outputs found

    Realistic rendering and reconstruction of astronomical objects and an augmented reality application for astronomy

    Get PDF
    These days, there is an ever increasing need for realistic models, renderings and visualization of astronomical objects to be used in planetarium and as a tool in modern astrophysical research. One of the major goals of this dissertation is to develop novel algorithms for recovering and rendering 3D models of a specific set of astronomical objects. We first present a method to render the color and shape of the solar disc in different climate conditions as well as for different height to temperature atmospheric profiles. We then present a method to render and reconstruct the 3D distribution of reflection nebulae. The rendering model takes into account scattering and absorption to generate physically realistic visualization of reflection nebulae. Further, we propose a reconstruction method for another type of astronomical objects, planetary nebulae. We also present a novel augmented reality application called the augmented astronomical telescope, tailored for educational astronomy. The real-time application augments the view through a telescope by projecting additional information such as images, text and video related to the currently observed object during observation. All methods previously proposed for rendering and reconstructing astronomical objects can be used to create novel content for the presented augmented reality application.Realistische Modelle, Visualisierungen und Renderings von astronomischen Objekten gewinnen heuzutage in Planetarium Shows oder als Werkzeug für die Astrophysikalische Forschung immer mehr an Bedeutung. Eines der Hauptziele dieser Dissertation ist es, neue Algorithmen zum Rendering und zur Rekonstruktion von Astronomischen Objekten zu entwickeln. Wir beschreiben zuerst ein Verfahren zum Rendering von Farbe und Form der Sonnenscheibe für verschiedene Klimate und gegebenen Höhe zu Temperatur Profilen. Im weiterem wird eine Methode zum Rendering und zur Rekonstruktion von 3D Modellen von Reflexionsnebeln präsentiert. Das Renderingmodell berücksichtigt Streuung und Absorption, um physikalisch realistische Visualisierungen von Reflexionsnebeln zu erzeugen. Weiter, wird ein Rekonstruktionsalgorithmus für eine andere Art astronomischer Objekte, Planetarische Nebel, vorgeschlagen. Wir stellen eine neuartige Erweiterte Realität Anwendung vor, welche für die astronomische Bildung zugeschnitten ist. Die Anwedung erweitert die Sicht durch das Okular des Teleskopes und projiziert zusätzliche Informationen wie Bilder, Text und Video online, während des Betrachtens. Alle vorher erwähnten Verfahren zum Rendering und zur Rekonstruktion von Astronomischen Objekten können verwendet werden, um Inhalte für die vorgestellte Erweiterte Realität Anwendung zu entwerfen

    Realistic rendering and reconstruction of astronomical objects and an augmented reality application for astronomy

    Get PDF
    These days, there is an ever increasing need for realistic models, renderings and visualization of astronomical objects to be used in planetarium and as a tool in modern astrophysical research. One of the major goals of this dissertation is to develop novel algorithms for recovering and rendering 3D models of a specific set of astronomical objects. We first present a method to render the color and shape of the solar disc in different climate conditions as well as for different height to temperature atmospheric profiles. We then present a method to render and reconstruct the 3D distribution of reflection nebulae. The rendering model takes into account scattering and absorption to generate physically realistic visualization of reflection nebulae. Further, we propose a reconstruction method for another type of astronomical objects, planetary nebulae. We also present a novel augmented reality application called the augmented astronomical telescope, tailored for educational astronomy. The real-time application augments the view through a telescope by projecting additional information such as images, text and video related to the currently observed object during observation. All methods previously proposed for rendering and reconstructing astronomical objects can be used to create novel content for the presented augmented reality application.Realistische Modelle, Visualisierungen und Renderings von astronomischen Objekten gewinnen heuzutage in Planetarium Shows oder als Werkzeug für die Astrophysikalische Forschung immer mehr an Bedeutung. Eines der Hauptziele dieser Dissertation ist es, neue Algorithmen zum Rendering und zur Rekonstruktion von Astronomischen Objekten zu entwickeln. Wir beschreiben zuerst ein Verfahren zum Rendering von Farbe und Form der Sonnenscheibe für verschiedene Klimate und gegebenen Höhe zu Temperatur Profilen. Im weiterem wird eine Methode zum Rendering und zur Rekonstruktion von 3D Modellen von Reflexionsnebeln präsentiert. Das Renderingmodell berücksichtigt Streuung und Absorption, um physikalisch realistische Visualisierungen von Reflexionsnebeln zu erzeugen. Weiter, wird ein Rekonstruktionsalgorithmus für eine andere Art astronomischer Objekte, Planetarische Nebel, vorgeschlagen. Wir stellen eine neuartige Erweiterte Realität Anwendung vor, welche für die astronomische Bildung zugeschnitten ist. Die Anwedung erweitert die Sicht durch das Okular des Teleskopes und projiziert zusätzliche Informationen wie Bilder, Text und Video online, während des Betrachtens. Alle vorher erwähnten Verfahren zum Rendering und zur Rekonstruktion von Astronomischen Objekten können verwendet werden, um Inhalte für die vorgestellte Erweiterte Realität Anwendung zu entwerfen

    Gaze Guidance through Peripheral Stimuli

    Get PDF
    Guiding gaze using near-peripheral vision improves gaze-contingent-display efficiency by reducing display response latency. We propose a new approach for controlling exploration of static displays through near-peripheral stimuli, and report results of an evaluation of its effectiveness. 10 participants viewed full screen displays of 60 blurred pictures (Gaussian filtering). As soon as a fixation (first strategy) or a gaze sample (second strategy) was detected next to the current stimulus, the area surrounding it was deblurred. An image was totally deblurred when all stimuli had thus attracted the user's gaze. Stimuli are blinking deblurred circles (radius: 1 deg visual angle). They appear in predefined positions on the screen, one at a time. For each picture, successive stimulus positions on the screen reproduce observed gaze patterns. The current stimulus is visible only if the visual angle between its position on the screen and the position of the user's current fixation is superior to 8 deg (to avoid users noticing it) and inferior to 14 deg. (near-periphery upper limit). Eye movements are detected through an ASL-H6 eye-tracker (120 Hz). Stimulus saliency is estimated, for each picture and stimulus, from contrast ratio and sum of squared differences between blurred and deblurred area around the stimulus

    Abstract 3D Reconstruction of Reflection Nebulae from a Single Image

    No full text
    This paper presents a method for reconstructing the 3D distribution of dust densities in reflection nebulae based on a single input image using an analysisby-synthesis approach. In a reflection nebula, light is typically emitted from a central star and then scattered and partially absorbed by the nebula’s dust particles. We model the light transport in this kind of nebulae by considering absorption and single scattering only. While the core problem of reconstructing an arbitrary 3D volume of dust particles from a 2D image would be ill-posed we demonstrate how the special configuration of light transport paths in reflection nebulae allows us to produce non-exact but plausible 3D volumes. Our reconstruction is driven by an iterative non-linear optimization method, which renders an image in each step with the current estimate of dust densities and then updates the density values to minimize the error to the input image. The recovered volumetric datasets can be used in astrophysical research as well as planetarium visualizations.
    corecore